Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.935
Filtrar
1.
Brain Res ; 1807: 148323, 2023 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-36914041

RESUMEN

Identifying neurobiological characteristics that predict the development of cocaine use disorder would be of great value in prevention efforts. Because of their importance in mediating the abuse-related effects of cocaine, brain dopamine receptors are logical candidates for investigation. We analyzed data from two recently published studies that characterized availability of dopamine D2-like receptors (D2R) with [11C]raclopride PET imaging and dopamine D3 receptor (D3R) sensitivity with quinpirole-induced yawning in cocaine-naïve rhesus monkeys who subsequently acquired cocaine self-administration and completed a cocaine self-administration dose-effect curve. The present analysis compared D2R availability in several brain areas and characteristics of quinpirole-induced yawning, both acquired when monkeys were drug-naïve, with measures of initial sensitivity to cocaine. D2R availability in the caudate nucleus was negatively correlated with the ED50 of the cocaine self-administration curve, although the significance of this relationship was driven by an outlier and was not present after the outlier was removed. No other significant associations were observed between D2R availability in any examined brain region and measures of sensitivity to cocaine reinforcement. However, there was a significant negative correlation between D3R sensitivity, represented by the ED50 of the quinpirole-induced yawning curve, and the dose at which monkeys acquired cocaine self-administration. We also report no change from baseline D2R availability when a second PET scan was conducted after completion of the dose-effect curves. These data suggest the utility of D3R sensitivity, but not D2R availability, as a biomarker for vulnerability and resilience to cocaine. The well-established relationships between dopamine receptors and cocaine reinforcement in cocaine-experienced humans and animals may require extensive cocaine exposure.


Asunto(s)
Cocaína , Humanos , Animales , Masculino , Cocaína/farmacología , Dopamina , Quinpirol/farmacología , Macaca mulatta , Receptores de Dopamina D3 , Agonistas de Dopamina/farmacología , Receptores de Dopamina D2/fisiología , Autoadministración , Relación Dosis-Respuesta a Droga
2.
Neuropsychopharmacology ; 48(3): 459-467, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36446928

RESUMEN

Previous work indicated that deep brain stimulation (DBS) of the nucleus accumbens shell in male rats attenuated reinstatement of cocaine seeking, an animal model of craving. However, the potential differential impact of DBS on specific populations of neurons to drive the suppression of cocaine seeking is unknown. Medium spiny neurons in the nucleus accumbens are differentiated by expression of dopamine D1 receptors (D1DRs) or D2DRs, activation of which promotes or inhibits cocaine-related behaviors, respectively. The advent of transgenic rat lines expressing Cre recombinase selectively in D1DR-containing or D2DR-containing neurons, when coupled with Cre-dependent virally mediated gene transfer of channelrhodopsin (ChR2), enabled mimicry of DBS in a selective subpopulation of neurons during complex tasks. We tested the hypothesis that high frequency DBS-like optogenetic stimulation of D1DR-containing neurons in the accumbens shell would potentiate, whereas stimulation of D2DR-containing neurons in the accumbens shell would attenuate, cocaine-primed reinstatement of cocaine seeking. Results indicated that high frequency, DBS-like optogenetic stimulation of D2DR-containing neurons attenuated reinstatement of cocaine seeking in male rats, whereas DBS-like stimulation of D1DR-containing neurons did not alter cocaine-primed reinstatement. Surprisingly, DBS-like optogenetic stimulation did not alter reinstatement of cocaine seeking in female rats. In rats which only expressed eYFP, intra-accumbens optogenetic stimulation did not alter cocaine reinstatement, indicating that the effect of DBS-like stimulation to attenuate cocaine reinstatement is mediated specifically by ChR2 rather than by prolonged light delivery. These results suggest that DBS of the accumbens may attenuate cocaine-primed reinstatement in male rats through the selective manipulation of D2DR-containing neurons.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Femenino , Ratas , Masculino , Animales , Cocaína/farmacología , Inhibidores de Captación de Dopamina/farmacología , Ratas Sprague-Dawley , Núcleo Accumbens , Optogenética , Trastornos Relacionados con Cocaína/tratamiento farmacológico , Neuronas , Receptores de Dopamina D2/fisiología , Autoadministración/métodos , Comportamiento de Búsqueda de Drogas
3.
J Physiol Pharmacol ; 73(3)2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36515630

RESUMEN

Dopamine D1-like and D2-like receptors are expressed in the pulmonary arteries, however there is a little information about their effect on vascular tone in pulmonary circulation, even the vascular effect of activation of the dopamine D3 and D4 subtypes in physiological and pathological conditions such as pulmonary hypertension is unknown. The objective of this study was to evaluate the vascular response of trunk pulmonary artery rings from saline and monocrotaline-treated rats in the presence of selective dopamine receptor agonists. In trunk pulmonary artery rings with intact and denuded endothelium, cumulative concentration-response curves were performed for phenylephrine, acetylcholine, and dopamine receptor agonists (apomorphine-D2-like, SKF38393-D1, quinpirole-D2/D3, 7-OH-DPATD3, and PD168077-D4) alone and in the presence of corresponding selective dopamine receptor antagonists (SCH23390-D1, raclopride-D2/D3, U99194 maleate-D3, and L-745,870-D4). Contractile and relaxant effects generated during the activation with phenylephrine and acetylcholine, respectively, were significantly reduced in intact and denuded endothelium trunk pulmonary artery rings from monocrotaline rats in comparison with control rats. All dopamine receptor agonists, except the 7-OH-DPAT, produced significant vascular relaxation in intact trunk pulmonary artery rings precontracted with phenylephrine in both experimental groups. Also, the vascular relaxation of SKF38393, and particularly apomorphine and PD168077 was significant in denuded endothelium trunk pulmonary artery rings from control and monocrotaline groups. Furthermore, the vasorelaxation induced by these dopamine agonists was significantly reduced in pulmonary preparations from monocrotaline-treated rats in comparison to that recorded in preparations from control rats. The effect of dopamine receptor agonists decreased significantly in the presence of the corresponding antagonist in both experimental groups. The results support that dopamine D4 receptor agonist induces significant vascular relaxation, whereas dopamine D3 receptor agonist induces vasoconstriction in intact and denuded endothelium trunk pulmonary artery rings in control and monocrotaline-induced pulmonary arterial hypertension rats.


Asunto(s)
Agonistas de Dopamina , Dopamina , Ratas , Animales , Agonistas de Dopamina/farmacología , Apomorfina/farmacología , Receptores de Dopamina D2/fisiología , Arteria Pulmonar , Monocrotalina/farmacología , 2,3,4,5-Tetrahidro-7,8-dihidroxi-1-fenil-1H-3-benzazepina , Acetilcolina/farmacología , Fenilefrina
4.
ASN Neuro ; 14: 17590914221102075, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36050845

RESUMEN

SUMMARY STATEMENT: A2A receptor required previous D2 receptor activation to modulate Ca2+ currents. Istradefylline decreases pramipexole modulation on Ca2+ currents. Istradefylline reduces A2A + neurons activity in striatial microcircuit, but pramipexole failed to further reduce neuronal activity.


Asunto(s)
Dopamina , Trastornos Parkinsonianos , Adenosina , Animales , Trastornos Parkinsonianos/tratamiento farmacológico , Pramipexol , Receptores de Dopamina D2/fisiología , Roedores
5.
Behav Brain Res ; 417: 113611, 2022 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-34592376

RESUMEN

Fear extinction (FExt) is used to treat patients with posttraumatic stress disorder (PTSD). However, fear related to traumatic events can be persistent and return even after successful extinction. The neurochemical control of extinction seems to be performed by several neurotransmitters, including dopamine (DA), through D1 and D2 receptors. Recently, we showed that intranasally applied DA (IN-DA) facilitated the FExt, but the mechanisms by which it promoted this effect are still unknown. This study focused on investigating whether these effects are mediated by the action of DA on D2-like receptors since these receptors seem to be related to neurochemical and molecular changes underlying extinction. Also, we investigated whether IN-DA treatment would affect conditioned fear-induced antinociception (Fear-IA). Rats treated with IN-DA (1 mg/kg) twenty-five minutes after sulpiride (SUL; 40 mg/kg, i.p., D2-antagonist) were subjected to the extinction of contextual fear. IN-DA applied before the extinction session induced the FExt and prevented Fear-IA. These effects were impaired by pre-treatment with SUL, suggesting that the IN-DA effects are mediated by DA on D2-like receptors. SUL per se also facilitated the FExt but did not affect Fear-IA. These data suggest IN-DA as a promising pharmacological tool to supplement the psychotherapy of patients suffering from PTSD.


Asunto(s)
Condicionamiento Psicológico/fisiología , Antagonistas de los Receptores de Dopamina D2/farmacología , Dopamina/farmacología , Extinción Psicológica/fisiología , Miedo/fisiología , Receptores de Dopamina D2/fisiología , Sulpirida/farmacología , Administración Intranasal , Animales , Condicionamiento Psicológico/efectos de los fármacos , Dopaminérgicos/farmacología , Extinción Psicológica/efectos de los fármacos , Masculino , Ratas , Sulpirida/antagonistas & inhibidores
6.
Neurobiol Learn Mem ; 186: 107538, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34737042

RESUMEN

We evaluated interactions between dopamine D2 receptor and nitric oxide (NO) actions on the regulation of anxiety and memory in the 6-hydroxydopamine (6-OHDA) mouse model of Parkinson's disease (PD). A unilateral guide cannula was stereotaxically implanted over the right striatum. Elevated plus-maze test (EPM) test-retest protocol was employed to evaluate anxiety and memory in mice. The results revealed that injection of L-NAME (9 mg/kg) induced anxiolytic and amnesic effects, while L-arginine (9 mg/kg) produced anxiogenic and memory-improvement effects in the 6-OHDA mouse model of PD. Administration of sulpiride (20 mg/kg) induced anxiogenic and memory-improvement effects, whereas quinpirole (20 mg/kg) caused anxiolytic and amnesic effects in PD mice. Co-injection of sulpiride (5, 10, and 20 mg/kg) plus L-NAME (3 mg/kg) induced anxiolytic and amnesic effects. Co-injection of sulpiride (20 mg/kg) plus L-arginine (3 mg/kg) induced anxiogenic and memory-improvement effects. Co-administrations of quinpirole (20 mg/kg) and L-NAME (3 mg/kg) induced anxiolytic effect, but co-administration of quinpirole (20 mg/kg) plus L-arginine (3 mg/kg) caused anxiogenic and memory-improvement effects. The isobologram analysis revealed that there is a synergistic effect between sulpiride and L-arginine as well as quinpirole and L-NAME upon induction of anxiogenic and anxiolytic effects, respectively in PD mice. Our results suggested: (1) NO and dopamine D2 receptor mechanisms affect anxiety and memory in PD mice; (2) L-NAME reversed anxiogenic and memory-improvement effect induced by sulpiride; (3) Anxiolytic and amnesic effects induced by quinpirole reversed by L-arginine; (4) There is a synergistic effect between dopamine D2 receptor and NO systems on the modulation of anxiety and memory.


Asunto(s)
Arginina/farmacología , Agonistas de Dopamina/farmacología , Antagonistas de Dopamina/farmacología , Inhibidores Enzimáticos/farmacología , Enfermedad de Parkinson/fisiopatología , Quinpirol/farmacología , Sulpirida/farmacología , Adrenérgicos/farmacología , Animales , Ansiedad/tratamiento farmacológico , Ansiedad/fisiopatología , Modelos Animales de Enfermedad , Antagonistas de los Receptores de Dopamina D2/farmacología , Quimioterapia Combinada , Masculino , Memoria/efectos de los fármacos , Memoria/fisiología , Ratones , NG-Nitroarginina Metil Éster/farmacología , Óxido Nítrico/farmacología , Oxidopamina/farmacología , Receptores de Dopamina D2/fisiología
7.
Nat Commun ; 12(1): 6444, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34750364

RESUMEN

Synaptic pruning during adolescence is important for appropriate neurodevelopment and synaptic plasticity. Aberrant synaptic pruning may underlie a variety of brain disorders such as schizophrenia, autism and anxiety. Dopamine D2 receptor (Drd2) is associated with several neuropsychiatric diseases and is the target of some antipsychotic drugs. Here we generate self-reporting Drd2 heterozygous (SR-Drd2+/-) rats to simultaneously visualize Drd2-positive neurons and downregulate Drd2 expression. Time course studies on the developing anterior cingulate cortex (ACC) from control and SR-Drd2+/- rats reveal important roles of Drd2 in regulating synaptic pruning rather than synapse formation. Drd2 also regulates LTD, a form of synaptic plasticity which includes some similar cellular/biochemical processes as synaptic pruning. We further demonstrate that Drd2 regulates synaptic pruning via cell-autonomous mechanisms involving activation of mTOR signaling. Deficits of Drd2-mediated synaptic pruning in the ACC during adolescence lead to hyper-glutamatergic function and anxiety-like behaviors in adulthood. Taken together, our results demonstrate important roles of Drd2 in cortical synaptic pruning.


Asunto(s)
Giro del Cíngulo/fisiología , Plasticidad Neuronal/fisiología , Receptores de Dopamina D2/fisiología , Transducción de Señal/fisiología , Animales , Animales Modificados Genéticamente , Espinas Dendríticas/genética , Espinas Dendríticas/fisiología , Técnicas de Inactivación de Genes , Giro del Cíngulo/citología , Giro del Cíngulo/metabolismo , Heterocigoto , Potenciales Postsinápticos Inhibidores/genética , Potenciales Postsinápticos Inhibidores/fisiología , Mutación , Plasticidad Neuronal/genética , Neuronas/citología , Neuronas/metabolismo , Neuronas/fisiología , Técnicas de Placa-Clamp/métodos , Ratas Sprague-Dawley , Receptores de Dopamina D2/genética , Transducción de Señal/genética , Sinapsis/genética , Sinapsis/fisiología , Factores de Tiempo
8.
PLoS Comput Biol ; 17(9): e1009364, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34591840

RESUMEN

In behavioral learning, reward-related events are encoded into phasic dopamine (DA) signals in the brain. In particular, unexpected reward omission leads to a phasic decrease in DA (DA dip) in the striatum, which triggers long-term potentiation (LTP) in DA D2 receptor (D2R)-expressing spiny-projection neurons (D2 SPNs). While this LTP is required for reward discrimination, it is unclear how such a short DA-dip signal (0.5-2 s) is transferred through intracellular signaling to the coincidence detector, adenylate cyclase (AC). In the present study, we built a computational model of D2 signaling to determine conditions for the DA-dip detection. The DA dip can be detected only if the basal DA signal sufficiently inhibits AC, and the DA-dip signal sufficiently disinhibits AC. We found that those two requirements were simultaneously satisfied only if two key molecules, D2R and regulators of G protein signaling (RGS) were balanced within a certain range; this balance has indeed been observed in experimental studies. We also found that high level of RGS was required for the detection of a 0.5-s short DA dip, and the analytical solutions for these requirements confirmed their universality. The imbalance between D2R and RGS is associated with schizophrenia and DYT1 dystonia, both of which are accompanied by abnormal striatal LTP. Our simulations suggest that D2 SPNs in patients with schizophrenia and DYT1 dystonia cannot detect short DA dips. We finally discussed that such psychiatric and movement disorders can be understood in terms of the imbalance between D2R and RGS.


Asunto(s)
Dopamina/fisiología , Modelos Neurológicos , Receptores de Dopamina D2/fisiología , Adenilil Ciclasas/fisiología , Animales , Biología Computacional , Cuerpo Estriado/fisiología , Distonía Muscular Deformante/fisiopatología , Proteínas de Unión al GTP/fisiología , Humanos , Aprendizaje/fisiología , Potenciación a Largo Plazo/fisiología , Trastornos Mentales/fisiopatología , Trastornos del Movimiento/fisiopatología , Neuronas/fisiología , Recompensa , Esquizofrenia/fisiopatología , Transducción de Señal/fisiología
9.
Eur J Pharmacol ; 912: 174517, 2021 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-34555394

RESUMEN

Dopamine (DA) is an important modulator in nociception and analgesia. Spinal DA receptors are involved in descending modulation of the nociceptive transmission. Genetic variations within DA neurotransmission have been associated with altered pain sensitivity and development of chronic pain syndromes. The variant rs6277 in dopamine receptor 2 a (drd2a) has been associated with a decreased D2 receptor availability and increased nociception. The aim of this study is to further characterize the role of DA neurotransmission in nociception and the anti-nociceptive function of drd2a. The phenotype caused by rs6277 was modelled in zebrafish larvae using morpholino's and the effect on nociception was tested using a validated behavioural assay. The anti-nociceptive role of drd2a was tested using pharmacological intervention of D2 agonist Quinpirole. The experiments demonstrate that a decrease in drd2a expression results in a pro-nociceptive behavioural phenotype (P = 0.016) after a heat stimulus. Furthermore, agonism of drd2a with agonist Quinpirole (0.2 µM) results in dose-dependent anti-nociception (P = 0.035) after a heat stimulus. From these results it is concluded that the dopamine receptor drd2a is involved in anti-nociceptive behaviour in zebrafish. The model allows further screening and testing of genetic variation and treatment involved in nociception.


Asunto(s)
Dopamina/fisiología , Nocicepción/fisiología , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/fisiología , Transmisión Sináptica/fisiología , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Calor , Modelos Animales , Morfolinos/farmacología , Nocicepción/efectos de los fármacos , Quinpirol/farmacología , Receptores de Dopamina D2/agonistas , Transmisión Sináptica/efectos de los fármacos , Pez Cebra
10.
Mol Neurobiol ; 58(11): 5667-5681, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34387814

RESUMEN

The activity of the midbrain dopamine system reflects the valence of environmental events and modulates various brain structures to modify an organism's behavior. A series of recent studies reported that the direct and indirect pathways in the striatum are critical for instrumental learning, but the dynamic changes in dopamine neuron activity that occur during negative reinforcement learning are still largely unclear. In the present study, by using a negative reinforcement learning paradigm employing foot shocks as aversive stimuli, bidirectional changes in substantia nigra pars compacta (SNc) dopamine neuron activity in the learning and habituation phases were observed. The results showed that in the learning phase, before mice had mastered the skill of escaping foot shocks, the presence of foot shocks induced a transient reduction in the activity of SNc dopamine neurons; however, in the habituation phase, in which the learned skill was automated, it induced a transient increase. Microinjection of a dopamine D1 receptor (D1R) or D2 receptor (D2R) antagonist into the dorsomedial striatum (DMS) significantly impaired learning behavior, suggesting that the modulatory effects of dopamine on both the direct and indirect pathways are required. Moreover, during the learning phase, excitatory synaptic transmission to DMS D2R-expressing medium spiny neurons (D2-MSNs) was potentiated. However, upon completion of the learning and habituation phases, the synapses onto D1R-expressing medium spiny neurons (D1-MSNs) were potentiated, and those onto D2-MSNs were restored to normal levels. The bidirectional changes in both SNc dopamine neuron activity and DMS synaptic plasticity might be the critical neural correlates for negative reinforcement learning.


Asunto(s)
Dopamina/fisiología , Neuronas Dopaminérgicas/fisiología , Mesencéfalo/fisiología , Refuerzo en Psicología , Animales , Benzazepinas/farmacología , Cuerpo Estriado/fisiología , Antagonistas de los Receptores de Dopamina D2/farmacología , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/genética , Proteínas de Transporte de Dopamina a través de la Membrana Plasmática/metabolismo , Neuronas Dopaminérgicas/metabolismo , Conducta de Ingestión de Líquido/efectos de los fármacos , Electrochoque , Vectores Genéticos/administración & dosificación , Vectores Genéticos/farmacología , Ácido Glutámico/metabolismo , Habituación Psicofisiológica/efectos de los fármacos , Habituación Psicofisiológica/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de Dopamina D1/fisiología , Receptores de Dopamina D2/fisiología , Proteínas Recombinantes/metabolismo , Análisis de la Célula Individual , Sacarosa , Transmisión Sináptica
11.
Mol Neurobiol ; 58(11): 5971-5985, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34432265

RESUMEN

The dopaminergic system plays an essential role in maintaining homeostasis between the central nervous system (CNS) and the immune system. Previous studies have associated imbalances in the dopaminergic system to the pathogenesis of multiple sclerosis (MS). Here, we examined the protein levels of dopaminergic receptors (D1R and D2R) in different phases of the experimental autoimmune encephalomyelitis (EAE) model. We also investigated if the treatment with pramipexole (PPX)-a dopamine D2/D3 receptor-preferring agonist-would be able to prevent EAE-induced motor and mood dysfunction, as well as its underlying mechanisms of action. We report that D2R immunocontent is upregulated in the spinal cord of EAE mice 14 days post-induction. Moreover, D1R and D2R immunocontents in lymph nodes and the oxidative damage in the spinal cord and striatum of EAE animals were significantly increased during the chronic phase. Also, during the pre-symptomatic phase, axonal damage in the spinal cord of EAE mice could already be found. Surprisingly, therapeutic treatment with PPX failed to inhibit the progression of EAE. Of note, PPX treatment inhibited EAE-induced depressive-like while failed to inhibit anhedonic-like behaviors. We observed that PPX treatment downregulated IL-1ß levels and increased BNDF content in the spinal cord after EAE induction. Herein, we show that a D2/D3 receptor-preferred agonist mitigated EAE-induced depressive-like behavior, which could serve as a new possibility for further clinical trials on treating depressive symptoms in MS patients. Thus, we infer that D2R participates in the crosstalk between CNS and immune system during autoimmune and neuroinflammatory response induced by EAE, mainly in the acute and chronic phase of the disease.


Asunto(s)
Encefalomielitis Autoinmune Experimental/metabolismo , Receptores de Dopamina D1/fisiología , Receptores de Dopamina D2/fisiología , Anhedonia/efectos de los fármacos , Anhedonia/fisiología , Animales , Axones/patología , Factor Neurotrófico Derivado del Encéfalo/biosíntesis , Factor Neurotrófico Derivado del Encéfalo/genética , Cuerpo Estriado/metabolismo , Depresión/etiología , Depresión/prevención & control , Progresión de la Enfermedad , Evaluación Preclínica de Medicamentos , Encefalomielitis Autoinmune Experimental/tratamiento farmacológico , Encefalomielitis Autoinmune Experimental/psicología , Femenino , Interleucina-1beta/biosíntesis , Interleucina-1beta/genética , Ganglios Linfáticos/metabolismo , Ratones , Ratones Endogámicos C57BL , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Estrés Oxidativo , Fragmentos de Péptidos/biosíntesis , Fragmentos de Péptidos/genética , Pramipexol/farmacología , Pramipexol/uso terapéutico , Receptores de Dopamina D2/agonistas , Receptores de Dopamina D3/agonistas , Método Simple Ciego , Médula Espinal/metabolismo , Médula Espinal/patología
12.
PLoS Biol ; 19(7): e3001055, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34197448

RESUMEN

It has been widely accepted that dopamine (DA) plays a major role in motivation, yet the specific contribution of DA signaling at D1-like receptor (D1R) and D2-like receptor (D2R) to cost-benefit trade-off remains unclear. Here, by combining pharmacological manipulation of DA receptors (DARs) and positron emission tomography (PET) imaging, we assessed the relationship between the degree of D1R/D2R blockade and changes in benefit- and cost-based motivation for goal-directed behavior of macaque monkeys. We found that the degree of blockade of either D1R or D2R was associated with a reduction of the positive impact of reward amount and increasing delay discounting. Workload discounting was selectively increased by D2R antagonism. In addition, blocking both D1R and D2R had a synergistic effect on delay discounting but an antagonist effect on workload discounting. These results provide fundamental insight into the distinct mechanisms of DA action in the regulation of the benefit- and cost-based motivation, which have important implications for motivational alterations in both neurological and psychiatric disorders.


Asunto(s)
Análisis Costo-Beneficio , Dopamina/metabolismo , Macaca mulatta/fisiología , Motivación , Receptores de Dopamina D1/fisiología , Receptores de Dopamina D2/fisiología , Animales , Descuento por Demora , Antagonistas de Dopamina/farmacología , Macaca fuscata , Masculino , Tomografía de Emisión de Positrones , Receptores de Dopamina D1/efectos de los fármacos , Receptores de Dopamina D2/efectos de los fármacos , Carga de Trabajo
13.
J Clin Invest ; 131(18)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34264865

RESUMEN

BACKGROUNDCertain components of rest-activity rhythms such as greater eveningness (delayed phase), physical inactivity (blunted amplitude), and shift work (irregularity) are associated with increased risk for drug use. Dopaminergic (DA) signaling has been hypothesized to mediate the associations, though clinical evidence is lacking.METHODSWe examined associations between rhythm components and striatal D1 (D1R) and D2/3 receptor (D2/3R) availability in 32 healthy adults (12 female, 20 male; age 42.40 ± 12.22 years) and its relationship to drug reward. Rest-activity rhythms were assessed by 1-week actigraphy combined with self-reports. [11C]NNC112 and [11C]raclopride positron emission tomography (PET) scans were conducted to measure D1R and D2/3R availability, respectively. Additionally, self-reported drug-rewarding effects of 60 mg oral methylphenidate were assessed.RESULTSWe found that delayed rhythm was associated with higher D1R availability in caudate, which was not attributable to sleep loss or so-called social jet lag, whereas physical inactivity was associated with higher D2/3R availability in nucleus accumbens (NAc). Delayed rest-activity rhythm, higher caudate D1R, and NAc D2/3R availability were associated with greater sensitivity to the rewarding effects of methylphenidate.CONCLUSIONThese findings reveal specific components of rest-activity rhythms associated with striatal D1R, D2/3R availability, and drug-rewarding effects. Personalized interventions that target rest-activity rhythms may help prevent and treat substance use disorders.TRIAL REGISTRATIONClinicalTrials.gov: NCT03190954.FUNDINGNational Institute on Alcohol Abuse and Alcoholism (ZIAAA000550).


Asunto(s)
Ritmo Circadiano/fisiología , Receptores de Dopamina D1/fisiología , Receptores de Dopamina D2/fisiología , Recompensa , Trastornos Relacionados con Sustancias/etiología , Trastornos Relacionados con Sustancias/fisiopatología , Actigrafía , Adulto , Estimulantes del Sistema Nervioso Central/administración & dosificación , Cuerpo Estriado/fisiología , Femenino , Humanos , Masculino , Metilfenidato/administración & dosificación , Persona de Mediana Edad , Actividad Motora/fisiología , Tomografía de Emisión de Positrones , Descanso/fisiología , Adulto Joven
14.
Psychopharmacology (Berl) ; 238(8): 2225-2234, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33891128

RESUMEN

Episodic memory retrieval is fundamental for daily activities of humans and animals. Muscarinic cholinergic signaling is important for memory functioning and shows gender-dependent response in episodic memory retrieval. Dopamine D2 receptors influence memory formation and retrieval by influencing cholinergic signaling in the brain. This study aimed to determine the gender-dependent effects of D2 and muscarinic activity on memory retrieval. Male and female mice were trained for Morris water maze test and contextual fear conditioning. Memory retrieval was assessed following sub-chronic treatment (for 5 days) with D2 antagonist (risperidone 2.5 mg/kg) alone or in combination with scopolamine (1 mg/kg) or donepezil (1 mg/kg). Open field test was performed prior to the retrieval test to evaluate effects of risperidone treatment on locomotor activity and exploratory behavior. Risperidone co-treatment with donepezil impaired spatial memory retrieval in males only. Muscarinic and D2 simultaneous antagonism tend to impair fear retrieval in males but significantly enhanced retrieval of fear memories in female mice. These results suggest that D2 signaling influence muscarinic receptor activity during memory retrieval in gender-dependent manner.


Asunto(s)
Miedo/fisiología , Receptores de Dopamina D2/fisiología , Receptores Muscarínicos/fisiología , Caracteres Sexuales , Memoria Espacial/fisiología , Animales , Inhibidores de la Colinesterasa/farmacología , Antagonistas de los Receptores de Dopamina D2/farmacología , Miedo/efectos de los fármacos , Miedo/psicología , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Antagonistas Muscarínicos/farmacología , Receptores Muscarínicos/efectos de los fármacos , Memoria Espacial/efectos de los fármacos
15.
Biol Pharm Bull ; 44(3): 442-447, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33642553

RESUMEN

The dopamine system plays an important role in regulating many brain functions, including the motor function. The blockade of dopamine receptors results in a serious motor dysfunction, such as catalepsy and Parkinsonism. However, the neuronal mechanism underlying the drug-induced motor dysfunction is not well understood. Here, we examine brain-wide activation patterns in Fos-enhanced green fluorescent protein reporter mice that exhibit cataleptic behavior induced by SCH39166, a dopamine D1-like receptor antagonist, and raclopride, a dopamine D2-like receptor antagonist. Support vector classifications showed that the orbital cortex (ORB) and striatum including the caudoputamen (CP) and nucleus accumbens (ACB), prominently contribute to the discrimination between brains of the vehicle-treated and both SCH39166- and raclopride-treated mice. Interregional correlations indicated that the increased functional connectivity of functional networks, including the ORB, CP, and ACB, is the common mechanism underlying SCH39166- and raclopride-induced cataleptic behavior. Moreover, the distinct mechanisms in the SCH39166- and raclopride-induced cataleptic behaviors are the decreased functional connectivity between three areas above and the cortical amygdala, and between three areas above and the anterior cingulate cortex, respectively. Thus, the alterations of functional connectivity in diverse brain regions, including the ORB, provide new insights on the mechanism underlying drug-induced movement disorders.


Asunto(s)
Benzazepinas/farmacología , Catalepsia/inducido químicamente , Cuerpo Estriado/efectos de los fármacos , Antagonistas de Dopamina/farmacología , Corteza Prefrontal/efectos de los fármacos , Racloprida/farmacología , Animales , Catalepsia/fisiopatología , Cuerpo Estriado/fisiología , Ratones Endogámicos C57BL , Ratones Transgénicos , Corteza Prefrontal/fisiología , Receptores de Dopamina D1/antagonistas & inhibidores , Receptores de Dopamina D1/fisiología , Receptores de Dopamina D2/fisiología
16.
PLoS Genet ; 17(2): e1009346, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33524034

RESUMEN

Ethanol is a widely used drug, excessive consumption of which could lead to medical conditions with diverse symptoms. Ethanol abuse causes dysfunction of memory, attention, speech and locomotion across species. Dopamine signaling plays an essential role in ethanol dependent behaviors in animals ranging from C. elegans to humans. We devised an ethanol dependent assay in which mutants in the dopamine autoreceptor, dop-2, displayed a unique sedative locomotory behavior causing the animals to move in circles while dragging the posterior half of their body. Here, we identify the posterior dopaminergic sensory neuron as being essential to modulate this behavior. We further demonstrate that in dop-2 mutants, ethanol exposure increases dopamine secretion and functions in a DVA interneuron dependent manner. DVA releases the neuropeptide NLP-12 that is known to function through cholinergic motor neurons and affect movement. Thus, DOP-2 modulates dopamine levels at the synapse and regulates alcohol induced movement through NLP-12.


Asunto(s)
Caenorhabditis elegans/efectos de los fármacos , Neuronas Dopaminérgicas/efectos de los fármacos , Etanol/farmacología , Transmisión Sináptica/efectos de los fármacos , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiología , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiología , Depresores del Sistema Nervioso Central/farmacología , Dopamina/metabolismo , Neuronas Dopaminérgicas/fisiología , Humanos , Locomoción/efectos de los fármacos , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/fisiología , Mutación , Neuropéptidos/metabolismo , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/fisiología , Transducción de Señal/efectos de los fármacos
17.
Alcohol ; 91: 61-73, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33429015

RESUMEN

The rising popularity of alcohol mixed with energy drinks (AmEDs) has become a significant public health concern, with AmED users reporting higher levels of alcohol intake than non-AmED users. One mechanism proposed to explain this heightened level of alcohol intake in AmED users is that the high levels of caffeine found in energy drinks may increase the positive reinforcing properties of alcohol, an effect that may be dependent on interactions between adenosine receptor signaling pathways and the dopamine D2 receptor. Therefore, the purpose of the current study was to confirm whether caffeine does increase the positive reinforcing effects of alcohol using both fixed ratio (FR) and progressive ratio (PR) designs, and to investigate a potential role of the dopamine D2 receptor to caffeine-induced increases in alcohol self-administration. Male Long-Evans rats were trained to self-administer a sweetened alcohol solution (10% v/v alcohol + 2% w/v sucrose) on an FR2 schedule of reinforcement, and the effects of caffeine (0, 5, 10, and 20 mg/kg, i. p. [intraperitoneally]) on the maintenance of alcohol self-administration and alcohol break point were examined. Parallel experiments in rats trained to self-administer sucrose (0.8% w/v) were conducted to determine whether caffeine's reinforcement-enhancing effects extended to a non-drug reinforcer. Caffeine pretreatment (5-10 mg/kg) significantly increased sweetened alcohol self-administration and motivation for a sweetened alcohol reinforcer. However, similar increases in self-administration of a non-drug reinforcer were not observed. Contrary to our hypothesis, the D2 receptor antagonist eticlopride did not block a caffeine-induced increase in sweetened alcohol self-administration, nor did it alter caffeine-induced increases in motivation for a sweetened alcohol reinforcer. Taken together, these results support the hypothesis that caffeine increases the positive reinforcing effects of alcohol, which may explain caffeine-induced increases in alcohol intake. However, the reinforcement-enhancing effects of caffeine appear to be independent of D2 receptor function.


Asunto(s)
Consumo de Bebidas Alcohólicas , Cafeína , Etanol/administración & dosificación , Receptores de Dopamina D2/fisiología , Animales , Cafeína/farmacología , Condicionamiento Operante , Relación Dosis-Respuesta a Droga , Masculino , Ratas , Ratas Long-Evans , Autoadministración
18.
J Neurosci Res ; 99(3): 947-965, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33271630

RESUMEN

Cognitive decline in Parkinson's disease (PD) is a common sequela of the disorder that has a large impact on patient well-being. Its physiological etiology, however, remains elusive. Our study used graph theory analysis to investigate the large-scale topological patterns of the extrastriatal dopamine D2 receptor network. We used positron emission tomography with [11 C]FLB-457 to measure the binding potential of cortical dopamine D2 receptors in two networks: the meso-cortical dopamine network and the meso-limbic dopamine network. We also investigated the application of partial volume effect correction (PVEC) in conjunction with graph theory analysis. Three groups were investigated in this study divided according to their cognitive status as measured by the Montreal Cognitive Assessment score, with a score ≤25 considered cognitively impaired: (a) healthy controls (n = 13, 11 female), (b) cognitively unimpaired PD patients (PD-CU, n = 13, 5 female), and (c) PD patients with mild cognitive impairment (PD-MCI, n = 17, 4 female). In the meso-cortical network, we observed increased small-worldness, normalized clustering, and local efficiency in the PD-CU group compared to the PD-MCI group, as well as a hub shift in the PD-MCI group. Compensatory reorganization of the meso-cortical dopamine D2 receptor network may be responsible for some of the cognitive preservation observed in PD-CU. These results were found without PVEC applied and PVEC proved detrimental to the graph theory analysis. Overall, our findings demonstrate how graph theory analysis can be used to detect subtle changes in the brain that would otherwise be missed by regional comparisons of receptor density.


Asunto(s)
Encéfalo/fisiología , Disfunción Cognitiva/etiología , Disfunción Cognitiva/fisiopatología , Enfermedad de Parkinson/fisiopatología , Receptores de Dopamina D2/fisiología , Anciano , Mapeo Encefálico , Dopamina , Femenino , Humanos , Masculino , Persona de Mediana Edad , Red Nerviosa , Pruebas Neuropsicológicas , Tomografía de Emisión de Positrones , Receptores de Dopamina D2/metabolismo
19.
Neurosci Lett ; 742: 135514, 2021 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-33227368

RESUMEN

The spinal cord contains a highly collateralized network of descending dopamine (DA) fibers that stem from the dorso-posterior hypothalamic A11 region in the brain, however, the modulatory actions of DA have generally only been assessed in lumbar segments L2-L5. In contrast to these exclusively sensorimotor segments, spinal cords segments T1-L2 and, in mouse, L6-S2, additionally contain the intermediolateral (IML) nucleus, the origin of autonomic nervous system (ANS). Here, we tested if the different spinal circuits in sensorimotor and IML-containing segments react differently to the modulation of the monosynaptic reflex (MSR) by DA. Bath-application of DA (1 µM) led to a decrease of MSR amplitude in L3-L5 segments; however, in IML-containing segments (T10-L2, and S1/2) the MSR response was facilitated. We did not observe any difference in the response between thoracic (sympathetic) and lumbosacral (parasympathetic) segments. Application of the D2-receptor agonists bromocriptine or quinpirole mimicked the effects of DA, while blocking D2 receptor pathways with raclopride or application with the D1-receptor agonist SKF 38393 led to an increase of the MSR in L3-L5 segments and a decrease of the MSR in IML-containing segments. In contrast, in the presence of the gap-junction blockers, carbenoloxone and quinine, DA modulatory actions in IML-containing segments were similar to those of sensorimotor L3-L5 segments. We suggest that DA modulates MSR amplitudes in the spinal cord in a segment-specific manner, and that the differential outcome observed in ANS segments may be a result of gap junctions in the IML.


Asunto(s)
Sistema Nervioso Autónomo/fisiología , Antagonistas de los Receptores de Dopamina D2/farmacología , Dopamina/farmacología , Receptores de Dopamina D2/fisiología , Reflejo/fisiología , Médula Espinal/fisiología , Animales , Sistema Nervioso Autónomo/efectos de los fármacos , Estimulación Eléctrica/métodos , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Técnicas de Cultivo de Órganos , Receptores de Dopamina D2/agonistas , Reflejo/efectos de los fármacos , Médula Espinal/efectos de los fármacos
20.
Neuropharmacology ; 175: 108163, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32479812

RESUMEN

Adolescence is characterized by changes in behavior, such as increases in sensation seeking and risk taking, and increased vulnerability to developing a range of psychiatric disorders, including substance abuse disorders (SUD) and mood disorders. The mesolimbic dopamine system plays an essential role in mediating these behaviors and disorders. Therefore, it is imperative to understand how the dopamine system and its regulation are changing during this period of development. Here, we used ex vivo fast scan cyclic voltammetry to compare stimulated dopamine release and its local circuitry regulation between early adolescent and adult male and female Sprague-Dawley rats. We found that, compared to adults, adolescent males have decreased stimulated dopamine release in the NAc core, while adolescent females have increased dopamine release in the NAc shell, NAc core, and DMS. We also found sex- and region-specific differences in other dopamine dynamics, including maximal dopamine uptake (Vmax), release across a range of stimulation frequencies, and autoreceptor regulation of dopamine release. Better understanding how the dopamine system develops during adolescence will be imperative for understanding what mediates adolescent vulnerability to developing psychiatric disorders and how disruptions during this period of reorganization could alter behaviors and vulnerability into adulthood.


Asunto(s)
Cuerpo Estriado/fisiología , Dopamina/fisiología , Receptores de Dopamina D2/fisiología , Factores de Edad , Animales , Femenino , Masculino , Neuronas/fisiología , Núcleo Accumbens/fisiología , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...